Simulation-based Optimization of Thermal Systems
نویسنده
چکیده
This paper considers the design and optimization of thermal systems on the basis of the mathematical and numerical modeling of the system. Many complexities are often encountered in practical thermal processes and systems, making the modeling challenging and involved. These include property variations, complicated regions, combined transport mechanisms, chemical reactions, and intricate boundary conditions. The paper briefly presents approaches that may be used to accurately simulate these systems. Validation of the numerical model is a particularly critical aspect and is discussed. It is important to couple the modeling with the system performance, design, control and optimization. This aspect, which has often been ignored in the literature, is considered in this paper. Design of thermal systems based on concurrent simulation and experimentation is also discussed in terms of dynamic data-driven optimization methods. Optimization of the system and of the operating conditions is needed to minimize costs and improve product quality and system performance. Different optimization strategies that are currently used for thermal systems are outlined, focusing on new and emerging strategies. Of particular interest is multi-objective optimization, since most thermal systems involve several important objective functions, such as heat transfer rate and pressure in electronic cooling systems. A few practical thermal systems are considered in greater detail to illustrate these approaches and to present typical simulation, design and optimization results.
منابع مشابه
OPTIMIZATION-BASED MONITORING-SUPPORTED CALIBRATION OF A THERMAL PERFORMANCE SIMULATION MODEL
Building performance simulation is being increasingly deployed beyond the building design phase to support efficient building operation. Specifically, the predictive feature of the simulation-assisted building systems control strategy provides distinct advantages in view of building systems with high latency and inertia. Such advantages can be exploited only if model predictions can be relied u...
متن کاملOptimal Scheduling of Coordinated Wind-Pumped Storage-Thermal System Considering Environmental Emission Based on GA Based Heuristic Optimization Algorithm
The integration of renewable wind and pumped storage with thermal power generation allows for dispatch of wind energy by generation companies (GENCOs) interested in participation in energy and ancillary services markets. However, to realize the maximum economic profit, optimal coordination and accounting for reduction in cost for environmental emission is necessary. The goal of this study is to...
متن کاملExergetic, Exergoeconomic and Exergoenvironmental Multi-Objective Genetic Algorithm Optimization of Qeshm Power and Water Cogeneration Plant
In this study, optimization of Qeshm power and water desalting cogeneration plant has been investigated. The objective functions are related to maximizing exergetic efficiency and minimization of exergoeconomic and exergoenvironmental parameters. Also, the integration of RO desalination with the existing plant has been evaluated based on these analyses. This plant includes two MAPNA 25 MW gas t...
متن کاملComparison of entropy generation minimization principle and entransy theory in optimal design of thermal systems
In this study, the relationship among the concepts of entropy generation rate, entransy theory, and generalized thermal resistance to the optimal design of thermal systems is discussed. The equations of entropy and entransy rates are compared and their implications for optimization of conductive heat transfer are analyzed. The theoretical analyses show that based on entropy generation minimizat...
متن کاملSimulation and Optimization of Tehran Oil Refinery Steam Network in view of Exergetic, Exergoeconomic and Environmental Analysis
Due to the importance of energy consumption in a steam network of oil refinery as a significant unit, present study is concerned with the optimization of an oil refinery steam network. Here, the attempt was made to use concepts such as first and second thermodynamic laws, thermo-economic, environmental and economic discussions to investigate three different scenarios about Tehran refinery steam...
متن کاملMulti-Objective Optimization of Solar Thermal Energy Storage Using Hybrid of Particle Swarm Optimization and Multiple Crossover and Mutation Operator
Increasing of net energy storage (Q net) and discharge time of phase change material (t PCM), simultaneously, are important purpose in the design of solar systems. In the present paper, Multi-Objective (MO) based on hybrid of Particle Swarm Optimization (PSO) and multiple crossover and mutation operator is used for Pareto based optimization of solar systems. The conflicting objectives are Q net...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007